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1. BACKGROUND

In order to characterize an unknown object by remote sensing, certain

electrical properties of the object may be used [1-9]. In particular,

the impulse response, ramp response and the natural resonant frequencies

of the object have been proposed. In order to accurately probe the

object, one must illuminate it with a band of frequencies whose wave-

lengths are approximately the same dimensions as the overall length

of the object. Since, in general, the size of the object is not known

beforehand, it is necessary to illuminate the object by a broadband

signal such as a waveform which is an approximation to an Impulse.

The transmitted pulse induces electrical currents on the object and

reradiates the Incidental energy. The problem is then to obtain the

electrical properties of the object from the transmitted and received

time domain waveforms. This area has been investigated by the researchers

at the Ohio State University 1-5].

In recent years with the advent of the singularity expansion method,

efforts have been directed towards characterizing an object by Its

natural frequencies - poles and zeros [6-8]. For this purpose, Prony's

method has been applied with much success in analyzing measured impulse

responses with high signal to noise ratio. However, it is difficult to

extend Prony's method to arbitrary Input and arbitrary output wave-

forms. Also the SEM representation does not account for the Impulsive

portion of the system time behavior. Hence, the complete Impulse response

contains more Information than the SEM poles. One of the objectives of

this paper Is to obtain the impulse response In the time domain when

arbitrary Input and output waveforms are given.

More recently, the pencil of function method [10-14 has been applied

with much success to obtain the natural frequencies of objects from

measured arbitrary Input and output time waveforms. Both Prony's and
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the pencil of function method are frequency domain techniques. The

accuracies of determining impulse responses by either of these techniques

depend directly on the time domain data available. Also a significant

problem with any such parametric scheme Is the need to estimate the

number of dominant poles and zeros. A poor estimate can lead to large

errors in the results.

Finally as discussed In the next section, it Is not easy to obtain

the impulse response from given input and output time domain waveforms

using Fast Fourier Transform techniques [9].

The objective of this paper is to present two techniques for obtaining

the impulse response of an object directly in the time domain from

measured input and output waveforms.

2. INTRODUCTION

Let x(t) be the Input to a time invariant causal linear system which

is characterized by its impulse response h(t). The corresponding output

y(t) is given by

y(t) - J x(t-T)h(T) dt (1)
0

One approach for solving (1) for the Impulse response Involves the

Laplace Transform. The result Is

Y(s) - N(s)-X(s) (2)

where X(s), Y(s) and H(s) are the Laplace Transforms of x(t), y(t) and

h(t), respectively. The impulse response h(t) is obtained by taking the

Inverse Laplace Transform of (2) to yield

h(t) - 1 Y) exp(st) ds ()2 TJ r x ~5j
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where r is the Bromwich contour. Numerical problems are frequently

encountered with this approach when dealing with real data [9]. For

example, when using Fast Fou~rier Transform techniques, the division

blows up if X(jw)-O in the pass band.

Two time domain methods are presented in this paper. One is the

method of synthetic division while the other is the method of least

squares. The former is computationally straightforward whereas the

latter Is computationally more stable.

In this presentation y(t) and x(t) are assumed to be discrete time

signals with Identical sampling rates. The problem is to process the

discrete data points so as to estimate the corresponding discrete

impulse response without introducing additional information like the

augmented high frequency response [9].

Let the Ith samples of y(t), x(t) and h(t) be denoted by yI, X1,

and hi. respectively. Also, assume that y(t) and x(t) are available

as the finite time series {y) - {yo' Y' Y2""'YN' and {x) - {x0, x1,

x2,...,xMJ. The object Is to estimate the finite Impulse response

time series h) - {hO, h , h2 ,...,hL).

For convenience, the following assumptions are made:

(a) hi - 0 for I > L.

(b) x1 is observed for 0 - J < M and is not Identically zero.

(c) x J- 0 for 0>J and J > M.

(d) Yk Is observed for 0 < k < N (-M+L)

3. BA HLI'S TECHNIQUE (SYNTHETIC DIVISION) [15-16]

This method Is applicable for all positive Integer choices of N,

M and L. The sequence corresponding to h(t) Is written symbolically as

(h) y10I29"N {oh,.h
ixopxpx 2" 'xM



where the division of sequence {y} by sequence {x] is carried out by

synthetic division.

Justification of the synthetic division operation is obtained from

the theory of z-transforms. The input and output z-transforms can be

written as

y(z) - yO+ylz' +y2z(2+...yNzN5)
Z-1 7-2 -M.

x(z) - x0+XIl +x2z +...+zM. (6)

h(z) is then the ratio of the two polynomials given by (5) and (6). Since

two z-polynomials are divided in the same manner as algebraic polynomials,

the operation of synthetic division is justified.

Alternatively, a discrete approximation to (1) is

yj - AT f h. ixi (7)
10 wo

where AT is the sampling interval. A computationally compact form for

h is then given by

y-AT xih .I

h - (8)

where it is assumed x oO. The values for h obtained in this way differ

from those obtained by synthetic division by the constant factor IAT.

Note that both of these methods are applicable to discontinuous

inputs and outputs.

Example 1: As a simple example, consider the rectangular pulse {x} -

(I, I, i} to be an Input to a system whose output is the triangular pulse

{y) - {1,2,3,2,11. Using synthetic division, as implied by (4) the

unknown transfer function {h) is given by

h(z) - 2+2z 1+jz-2+2z'3+z'4 + z -1 + z"2  (9)

i+z' l+z"2

This Implies {h) - {,),)).

Alternatively, if it is assumed AT - I, application of (8) results

In (h) - (I,1,1). This agrees with the solution obtained by synthetic

division.



4. EFFECT OF MEASUREMENT ERRORS

The effect of measurement errors on the synthetic division scheme Is

now considered. Assume that the input measurement is corrupted by

additive noise p(t) so that the total recorded input is x+p. Also

assume that the output measurement is corrupted by noise q(t) such that

the total measured output is y+q. Using samples of the corrupted input

and output measurements, an estimate of the Impulse response, denoted

by r(z), Is given by

E() y(z)+q(z) (yO+YiZ- +y 2Z- 2+"'+YNz-N )+(qo0+q Iz- +...+q Nz-N)

"X(z)+p(Z ) l1 ( + . -M.. "l -I10M)
(x +XZ +...X z )+1P 0+P1Z +... z

In this section the relationship of the estimate (hI to the true

Impulse response {h) is explored where it is assumed that the measure-

ment errors are small and that the elements of {q} and (p) which pertain

to two different measurements, are statistically independent zero mean

random variables.

The expression in (10) can be rewritten as

h(z)- - (11)

For those values of z: for which 11 +*

may be expanded in a Binomial series to yield

+PO +pz-1 +...+p~z - - . (12)
7 + ].+ (12)

Xo+xZ -1 +...+xmz -

It follows for these values of z that

%Cz) - -P + (z 1_ p *[ + { -2 (13)

- Z -q 4 X~z)



The expected value of a random sequence is defined to be the sequence

whose elements are expectations of the original elements. Since each

element represents a sample value of the waveform, the expectation of

the element corresponds to an ensemble average of the waveform at the

Instant of the sample value. Then the expected value of the estimate

h(z) is given by

E[5(z)]-usx{-E[I+4.-] E[I-(z)+{ x ")2 " "

[x(z)]

and (I1 .)EZqz) - ~ z -l ~ )} I -2rz)

(z) - E[q 0+q I z +q2z +...]

- E[q 0]+E[q Iz- I +E[q2 z'
2+...

-o (15)

where use has been made of the assumptions of zero mean and statistical

Independence of the random variables pi and q,. Similarly,

E [p(z)] - 0 (16)

and

E[p(z)]2  E(p 02+2Pppz +2P0p2z'
2+...

2 -2+2 -3 -. -+p2z 1+2p p2 z+
" " +p2z +2p2p3z+. "

-O 2 + F 2z-2 + o 2z-4+. (17)

p2
where

2 2 (18)

Consequently a 2 + a 2z'2 +

E[f(z)] - h(z)-[l+ PO l ]

(x0+X Iz I+...+x 
z-M) 2

Sh'0 + h;z-
1 + hz "2 + ... (19)

6
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where h(z) - y(z)/x(z), Thus If the variances of the Input measurement

errors are known, approximate values for the expectation of the estimate

of the time domain Impulse response S(z) can be evaluated. Notice that

If P1 BO for all I (i.e. the Input measurement Is free from any

additive noise) then the estimate Is unbiased even though a measurement

error is still associated with the output. However if p, 0 0 then there

is a bias in the solution which is given as

2 -2

E[h(z)] - h(z) - h(z)- { P +( iz . ...- M .
(xX xZ + '".+x z I

By definition, the variance of a sequence is the sequence whose

elements are the variance of the original elements. Each variance is

the variance of the original random waveform at the corresponding

sampling instant. Note that

2_ q ~zjp(z4 02(z)
1(z) - E[N(z)] - h(z) [ 3 - x4 +. xA } 2  )2 ]YTZT X7" x(z)y(z) [ x( z)]2

+ ... higher order terms (20)

where a 2(z) - o 2 + a 2z + 2z- 4 ...
P PO l P2

As a first approximation

(z) - E[~z)] qz) - h(z)p(z)fi~z -Efi~zx(z)

- Co + CIz'l + c 2z-
2 + (21)

Note that (21) corresponds to the zero mean sequence {CoC 1 ,C2,...}.

It follows that the variance of this sequence, which also equals the

variance of h(z), results In

o2[If(z)] - ICO 2]+II 2]zI +E[c 2 2Iz 2+...

2 2 -1 2 -2
M 02+ oF2z + a 2 z ... (22)

2 2where a -Etc I2].



Use of (22) and (16), in conjunction with Tshebyshev's inequality

[17], yields the inequality

P[h1  - koi < T;< hi  ka] I - (23)
- k 2

where P[.] denotes the probability of the argument in the brackets and

fi is the element in {M}. Equation (23) is valid for small measurement errors.

In summary, if the first and second order statistic of the random

sequences {p) and {q) are known, then (22) and (16) yield approximate

expressions for the variance and mean of the sample values of the

extimate of the time domain impulse response obtained from (10).

Example 2: Consider a system with impulse response {h) - {1,1} for

which the input is {x) - 11,11 and the output is {y) - {1,2,1}. Assume,

for the purpose of illustration, that the input and output are each

contaminated by zero mean additive measurement errors which take on

the values +0.01 or -0.01 with equal probability. Note that the

2 -4
measurement errors have zero means and variances a2- 10 . Consider

a particular measurement error which results in the observations

{x) - {1.01,0.99} and {y) - {0.99, 2.01, 1.0). In this example, the

effects of the measurement errors on the extimate {h} are explored.

From (10) the estimate of the impulse response is obtained as

iz. 9+.1-l z-2 -2 3 (4

M -z) x4= 99+2"Olz'-l ' 9802+1.0293z--.0190z +.0190z "  (24)xj 1 .01+.99z- =.

{M} - {.9802, 1.0293, -.0190, .0190, ...} (25)

The measurement errors are seen to cause the elements in {IQ to differ

from those In {h) and to cause (T} to be an Infinite sequence whereas

{h) was finite.

8
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BY using (24) the expected value of the estimate is found to be

E[R(z)] - (1+o 2)+(l-o 2)z +20 2 z-22 z3+...

- 1.0001 + 0.9999z "1 + .0002z - .0002z=3+ ... (26)

It Is seen that the mean value of the estimate is biased. This is due

to measurement errors in the input.

The variances of the estimate are obtained from (21) and (22).

Observe that

R(z)-E[fi(z) = (z) - h(z)p(z)

(qO-P0)+(qI-pI-q0 )z- +(q 2-qI+q 0 )Z 2-(q2+qI+q 0)Z-
3+ ... (27)

It follows that

[ [(q0 -PO)
2 ]+ E[(q -P-q0)2 ]z- +E[(q 2-q+q) 2Z-2

+ E[(q 2-qI+q 0 )
2 ]z'3+

- o 2[2+3z-1 +3z- 2+3z- 3+...] (28)

Consequently the variance of the first element in {M} is 2a2 while it

is 3a2 for the remaining elements.

Letting k-3 in (23), Tshebyshev's inequality yields

P[ -0 3(.O1l0)] >8/9

P[IR 1-0.99991 < 3(.0173)] > 8/9

P[It 2- .00021 < 3(.0173)] > 8/9 (29)

Observe that the estimates in (25) are within the 30 of the expected

values.

A disadvantage with the synthetic division scheme Is that the error

tends to build up wtth the length of the sequence.

9



5. A LEAST SQUARES APPROACH TO THE ESTIMATION PROBLEM

If X(s) [which is the Laplace Transform of x(t)] contains a zero

in the right half plane (RHP) [ I.e. non minimum phase], a serious

computational difficulty may arise with the synthetic division scheme

because H(s) may then contain a pole in the RHP [181. This results in

numerical Instability. With a stable system the RHP zero of X(s) Is

cancelled by the identical RHP in Y(s). However, in practice, round-off

and/or truncation errors in computing X(s) and Y(s) prevent this

cancellation. The synthetic division approach does not then converge.

Should this occur, an alternate approach must be used. This section

develops the least squares estimation of the time domain impulse

response from measured input and output data.

With reference to (7), the response of a discrete time systewr may

be written as

y' A.AT xihj  (30)

The convolution in (30) may be expressed in matrix form as

; x 0 0 0 ... 0 h0

y'l LxI x0 0 0 ... 0 hI
X2xm x 2  x I  .. . . . . .

•N ,XI.......................
YN NXI iM "M1 . . . 6 L LXI

- 0 0 . .xH
L M NXL

iY'] - ix]I] (31)

where Y' and H are NXI and LXI column matrices, respectively, and X is an

NXL rectangular matrix. Equation (31) can be solved for [H] by first

premultiplying both sides by [X]T (i.e. transpose of [X]). Then

[x] T[x][H] - [x]T[Y] (32)

10



It follows that

[H] - {[x]TX] " I [x]T[Y ' ]  (33)

It is interesting to note that X] T[x] is the autocorrelation matrix of

the available input time samples. Thus, [x] T[x] is a symmetric positive

semi-definlte matrix. In fact [xIT [X] is a Toplitz matrix and

therefore is Invertible by means of a recursive procedure requiring

L2 operations. The Inversion of [X] T[X] Is numerically highly unstable

as has been pointed out by Ekstrom [19]. He suggested a Singular Value

Decomposition technique for the Inversion. In this procedure [xIT x]

is converted to a diagonal matrix by a similarity transformation. The

elgenvalues are then filtered (i.e. elgenvalues below a certain small

amount are set to zero). The whole process of premultiplying by iX]T

and then obtaining the singular value decomposition is highly time

consuming. In this paper an alternate approach Is suggested based upon

the conjugate gradrent method [201.

With the conjugate gradient method it is not necessary to form the

matrix [x] T[x]. The matrix equation iX][H] - [Y'] is solved by the

following procedure:

By using any initial guess CHi 0 for the solution, the matrices [R] 0

and [P] 0 are generated where

[R] 0 - (X] [H]o-[Y'] (34)

and

T[P] -x] [R]. (35)

The (n+2)th estimate is then given by

[H]n+l [H]n tn[P] (36)

where
I Cx]T[R]n 12
t[ 2 (37)I jx]CP],l2

n 11XIPin11



and [R]n and [P]n are obtained according to the relations

[R]n a [R]n I + tn-11l][Pn-I (38)

S[P]n -[xR] n +1 [-][P]n- (38)

and

Ipn=- [X]T [R] n+ q n 1(P]n1  (39)

where

q [X]T[R]n 12 (40)

n-! IJx]T [R]n-11 2

The advantage of the conjugate gradient method Is that It is an

Iterative scheme which usually yields excellent results within J Iterations

where J Is the number of Independent elgenvalues of [xIT x. It has been

shown that the conjugate gradient method converges to a solution even

when [x]T(X] is singular. For this case the Iteration process is

terminated once the solution stops converging (i.e. begins to oscillate).

This method has been used successfully In the area of Image processing

for a similar deconvolution problem [21] . However, an analytical

expression Is available for the total number of Iterations beyond which

the Iterative procedure can be terminated [251.

The error analysis performed in the previous section is now

repeated in order to find mean and variance of the solution obtained by

the least squares method when measurement errors are introduced.

Corresponding to

IX][H] - [']

IH], an estimate of [HI, satisfies the matrix equation

iX+P] (H] - [Y'+Q (1l)

where [P and [Q) account for the measurement errors and are defined as

12



[P] p0  0 0 ..

P1  PO 0 0 ...

P2  Pi PO ......

e i(42)

and [Q] q0

ql

q N (43)

The elements of [P1 and [Q] are assumed to be statistically independent

zero mean random variables.

By assuming the measurement errors are small, an estimate of the

Impulse response is obtained as

[I] - {[X+p]Tx+p- ( x+p1 [y'+Q

T -1[j [XT[ -i T-{[x]T[x]}'{[I] - ([xIT(x]) [A]) (X+P] (Y'+Q]

+ higher order terms (44)

where

[3] - Identity matrix, and

[A] - [x]T[P] + [P]T[x] + [p]T I].

The expected value of the time domain impulse response is given by

T -1 T -l 2 TE(H1 {[XlT xl '{[-Ix([x]D " [) a ] [ y

where [ * 2 E{[P]T[P}1 . (45)
p

Also note that when measurement errors are associated with the

Input, then there Is a bias In the solution which is given by

H - EH3 - {[XIT[x]i) -2(]2 [X]T(Yh].

Similarly the variance of [H] Is defined to be a column vector whose

elements are the variances of each of the elements in [H]. Note that

13



I -ElR] - {[xiT [x) "1  [p]T [y,] + ix]T [Q] - (1x]T x])-I

*{IxiT p] + [P]T~x IxIT [Y'l

+ higher order terms

- [D] + higher order terms (46)

Then
a2[H] IEo

DN (47)

From (44) an estimate of the time domain impulse response can be obtained

at each instance through the column matrix [0]. The expected value and

the variance are obtained from (45) and (47), respectively, through the

elements of the column matrices E[R] and 2[R]. Using Tshebyshev's

inequality, as in the previous section, the probability of a particular

element [A.] of the matrix [H] lying between E[ji ± kc[iLf] is greater_JI

than ( 1 I > (4e

-P{I[lRj] -El[R]I <ko[Rj]} ._ (148)

Example 3: Consider, once again, the same problem stated In example 2.

From the problem statement, (41) becomes

.01 0. 0 .99,
S 0.9 [.0 (49)

After premultiplying both sides of the equations by [X+P]T and inverting

[X+P] T[x+P], the estimate [R] becomes

RO [ .986 853.0168 (50)

14.



This compares to

[H] - .0293] (51)

by the synthetic division method.

In addition, the least squares approach yields

T -1 T -12 TE[H] = ([x [x]11 (11 - {Ix [x- [a p])X] IY']

r9999
9999 (52)

and

-3Po +2qo + qt
[R-e] 3 3P, -qo +qi +2q2

Thus the variance of the estimate is

12  6[ 7 00- (53)

It is seen that (50) is within the bounds dictated by (48) for the

special case In which k-3; i.e., the estimate is within the range given

by [999j ± 3 [0129] (54)

.999 9 
12 9

By comparing (50) to (25) we find that the least squares method yields

a better estimate than the synthetic division technique for this

problem. Also, the variance of the least squares method is much smaller

than the variance of the synthetic division method. However, the

synthetic division scheme is computationally much simpler than the least

squares method and yields excellent results when a of the measurement

error is very small.

15



7. OPTIMUM INPUTS FOR WHITE NOISE

In most practical cases, the Input Is known with great accuracy.

The significant errors are then associated with measurement of the

output. The question then arises, "Given p(z)SO and q(z)0O, which

Input x(z) minimizes the variances of h(z) In (22) and (47)?"

It Is apparent from (21), (22) and (47) that the variances of

h(z) are reduced as the amplitude of x(z) Is increased. In a

practical situation, however, the amplitude of the Input may be

limited In order not to excite system nonlinearities. Also, the input

amplitude may be constrained due to power limitations. Therefore the

above question Is pursued subject to a constraint on the Input ampli-

tude. For convenience, the constraint is chosen to be on the mean

square value of x(z), i.e.

(0xx(0) - autocorrelatlon of the input x of lag zero

-1 2

Assuming p(z) - 0 and q(z) to be a white noise sequence, (47)

becomes

a[H - a 2{[xT[x 1 .- (56)
qT

Observe that [X] [X] Is a symmetric positive definite matrix with each

element along the principal diagonal having the value (M+1)xx (0).

Using Levin's results [241, the variance of (56) is minimized if and

only If

[X] TX] - (1+)#XX(O) [ M

where [1] Is the Identity matrix. Hence, provided the Input Is

deterministic, It follows that the solution for x(z) satisfies

16



ex(0) 0 0(ox (58)

*xx(Z) -O for O < L<L

Hence, the Input sequence x(z) which minimizes the variance is white

over a range of L samples.

8. MINIMUM VARIANCE ESTIMATE OF THE IMPULSE RESPONSE FOR COLORED NOISE

For the case in which the noise q(z) is not white, as was assumed

in the preceding section, then Laplace [22], Gauss [23] and Markov [241

have shown that the minimum variance unbiased estimate for the Impulse

response Is given by

[)T $1- 1 1 AI- [X] T 1 I V (59)
qq x M  qq

Observe the similarity to the solution given by (32). In (59) the

matrix I qq3 represents the covarlance matrix of the noise sequence q(z).

The subscript M In [HMI implies they are Markov estimates.

Equation (61) can be solved in a very computationally efficient way.

Since [ ] Is a non-singular symmetric covariance matrix, its Inverse
qq

can always be factored Into the following form

[ Mqq]-I [W]T[W] (60)

By application of (60), (59) can then be written as

T -T
[C]I[CI[IH ] - [C] [W]Y'] (61)

where

[C] A [w][XJ (62)

Equation (62) can now be solved by the conjugate gradient method as

outlined in section 5.

If the noise Is white then (59) Is equal to (32) and the solutions

are Identical. If the noise q(z) is not white, the Markov estimates

[HH] are much more difficult to compute. However the disadvantages of
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doing more computation are offset by the fact that the Markov estimates

are the minimum variance unbiased linear estimates of [H] (I.e, linear

In [Y']). If the noise sequence q(z) is Gaussian, it can be shown that

[i4] is an unbiased estimate and the Cramer-Rao Inequality holds with

the equality sign In [25].

9. CONCLUSION

Two techniques have been presented to compute the time domain Impulse

response from measured time domain input and output waveforms. The

computation is carried out directly in the time domain without the

need to perform any Laplace Transforms. Error bounds are presented when

the measured waveforms are contaminated with noise and the statistics

of the measurement errors are known. The input required under an

amplitude constraint to minimize the variance of the impulse response

estimate Is also discussed. Finally, a generalized least squares

technique Is presented which yields a minimum variance unbiased

estimate for the Impulse response.

Work is currently under way dealing with numerical examples from

measured waveforms.
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